

Abrasive Wear Resistance of Hypoeutectic 16 wt% and 26 wt% Cr Cast Irons with Molybdenum

Attasit Chooprajong^{1,a}, <u>Sudsakorn Inthidech^{2,b}</u>, Prasonk Sricharoenchai^{1,c} Kaoru Yamamoto^{3,d}, Nobuya Sasaguri^{3,e} and Yasuhiro Matsubara^{3,f}

¹Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand, 10330

² Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham, Thailand, 44150

³ Board of Trustees, Fukuoka Jo Gakuin, Fukuoka, Japan, 811-1313

^aattasit_c@hotmail.com, ^bsudsakorn.i@msu.ac.th, ^cPrasonk.S@chula.ac.th, ^dyamamoto@kurumenct.ac.jp, ^esasaguri@apollo.cc.kurume-nct.ac.jp, ^fmatsubara@fukujo.ac.jp

Abstract. Hypoeutectic 16 wt% and 26 wt% Cr cast irons with nil, 1 and 3 wt% Mo were prepared in order to investigate their abrasion wear resistance. The annealed test pieces were hardened from 1323 K and then tempered at three levels of temperatures between 673 and 823 K for 7.2ks, the temperature giving the maximum hardness (H_{Tmax}), lower temperature than that at H_{Tmax} (L- H_{Tmax}) and higher temperature than that at H_{Tmax} (H- H_{Tmax}). The abrasive wear behavior was evaluated using the two-body type abrasion wear test or Suga abrasion wear test. It was found that hardness and V γ in the heat-treated specimens varied depending on the Cr and Mo content. A linear relation was obtained between wear loss and wear distance. The lowest wear rate (R_W) was obtained in the H_{Tmax} specimen. The highest R_W was obtained in the H- H_{Tmax} specimen. Under the same heat treatment condition, the R_W in 16% Cr cast iron was much larger than that in 26% Cr cast irons. The lowest R_W obtained in the specimen with a certain amount of retained austenite, 25% V_Y in 16% Cr cast iron and 15% V_Y in 26% Cr cast iron, respectively.

Keywords: High chromium cast irons, abrasive wear resistance, heat treatment, hardness, volume fraction of retained austenite